外科感染症分離の Clostridium spp. とその薬剤感受性

品川長夫 *
NTT 西日本東海病院外科

由良二郎 *
松浦総合病院消化器センター

竹山廣光
名古屋市立大学大学院臨床病態外科学

谷口正哲
知多厚生病院外科
（2007年2月20日受付）

1982年7月から2006年3月までの24年間において、細菌が分離された3644検体中65検体（1.8％）から Clostridium spp. が分離された。一次感染症からは3.0％、術後感染症からは0.9％の分離頻度であり、一次感染症からの分離頻度が高かった。なかでも穿孔性腹膜炎を中心とする腹膜炎からの分離は34例（4.7％）と最も多く、次いで肝・胆道感染の9例（2.7％）であった。Clostridium spp. が単独で分離された症例は6例（9.2％）であり、その他は他の細菌との混合分離であった。混合分離の相手菌種としては Bacteroides fragilis を初めとする Bacteroides spp. が23.6％と最も多く、次いで Escherichia coli の19.7％、その他の好気性グラム陰性菌、Enterococcus spp. などであった。Clostridium perfringens (19株) に対しては、ペニシリン系薬、セフェム系薬、カルバペネム系薬など多くの薬剤が良好な抗菌力を示した。しかし、その他の Clostridium spp. (24株) については、セフェム系薬、Erythromycin (EM), Clindamycin (CLDM), Fosfomycin (FOM) などに高度耐性株が認められた。

近年、消化器外科領域感染症の分離菌として、無芽胞性気性菌の頻度は高く、それらに対する認識度が高くなってきている。一方、古くからの特異的感染症の原因菌として Clostridium spp. は、分離頻度は低いがその重要性は認識されてきたところである。しかし、実際の外科感染症からの分離頻度やそれらの薬剤感受性についての報告は少ない。1982年7月から全国的に消化器外科領域を中心とする外科感染症分離菌とその薬剤感受性の調査1-5）を行ってきたが、ここでは Clostridium spp. の

* 外科感染症分離菌感受性調査研究会　代表
分離状況と薬剤感受性について検討した。

I. 対象と方法

1982年7月に開始した外科感染症分離菌感受性調査研究会は消化器外科を中心とする25施設の共同研究会である(Table 1)。入院患者のうち消化器外科領域の感染症患者の病巣から検体をケンポーター®（クリニカルサプライ）に採取し、2002年3月までに東京総合臨床検査センターへ、その後は山田エビデンスリサーチへ送付し、原因菌を分離・同定した。

山田エビデンスリサーチでの原因菌の分離・同定の概要は以下の如くである。検査材料は(1)グラム染色、(2)直接分離培養、(3)増菌培養を施行した。染色結果から選択培地の追加が必要である場合と追加した。好気培養を馬血液寒天培地とBTB寒天培地を用いて37℃培養で毎日1回、3日間観察、嫌気培養はブレクサHK寒天培地、BBE寒天培地、PEAプルセラHK寒天培地、PVプルセラHK寒天培地を用い、嫌気ジャーでアネロバック（三菱ガス化学）を使用して37℃で3〜7日間観察、検出菌があればその都度純培養し、各菌種の特徴的な性状を重点に従来法および同定キットを併用し同定した。増菌培養は増菌培地のにのみ菌が検出された時や、グラム染色結果と直接分離培養結果で不一致があるときに分離して確認及び追加をした。薬剤感受性については、MIC2000システムを用いた日本化学療法学会標準法による微量液体希釈法により測定した。同一患者からの分離菌は初回のものを取り上げ、重複を避け、また、消化管と交通している腸鏡などを伴う腹腔内感染症は対象外とした。ここでは2006年3月までの24年間の間に分離したClostridium spp.の分離状況とその薬剤感受性について検討した。

II. 成績

1. Clostridium spp. 検出例の背景因子

1982年7月から2006年3月までの24年間において細菌が分離された3644検体中65検体（1.8%）からClostridium spp.が分離された。調査期間を前期と後期に分けると、Clostridium spp.の分離株数は前期20株、後期45株であった。一次感染症からは3.0%、術後感染症からは0.9%の分離頻度であり、一次感染症からの分離頻度が高かった。なかでも

<table>
<thead>
<tr>
<th>参照施設一覧</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 札幌医科大学</td>
</tr>
<tr>
<td>2. 国立病院機構塚玉病院</td>
</tr>
<tr>
<td>3. 慶應義塾大学</td>
</tr>
<tr>
<td>4. 日本大学板橋病院</td>
</tr>
<tr>
<td>5. 京都大学病院</td>
</tr>
<tr>
<td>6. 名古屋市立大学</td>
</tr>
<tr>
<td>7. 名古屋市立病院</td>
</tr>
<tr>
<td>8. 名古屋市立総合市民病院</td>
</tr>
<tr>
<td>9. 愛知県厚生農業労働組合病院</td>
</tr>
<tr>
<td>10. 愛知県厚生労働組合病院</td>
</tr>
<tr>
<td>11. 高知市立病院</td>
</tr>
<tr>
<td>12. 松阪総合病院</td>
</tr>
<tr>
<td>13. JA三重厚生連いなべ総合病院</td>
</tr>
</tbody>
</table>

順不同（以上25施設）
穿孔性腹膜炎を中心とする腹膜炎からの分離は34例(4.7%)と最も多く、次いで肝・胆道感染の9例(2.7%)であった（Table 2）。

手術との関係をみると、清潔手術（Clean operationを含む）後の分離は1例(1.5%)、準清潔手術（Clean-contaminated operationを含む）で13例(20.0%)、汚染手術（Contaminated, Dirty/Infected operationを含む）で5例(7.7%)であり、手術に関係しない症例からが46例(70.8%)と最も高い分離頻度であった（Fig. 1）。

Clostridium spp.が単独で分離された症例は、*Clostridium* spp.分離の2例、*Clostridium perfringens* 分離の2例、*Clostridium coccoïdes* 分離の1例と*Clostridium septicum*分離の1例の合計6例(9.2%)であり、その他は他の細菌との混合分離例であった。

混合菌数からみると、2菌種との分離例は24例(37.0%)と最も多く、次いで1菌種と3菌種が4例(6.4%)であった（Fig. 2）。

Clostridium spp.と混合で分離された細菌は127株あった。混合分離の相手菌種としては*Bacteroides fragilis*を初めとする*Bacteroides* spp.が23.6%と

Table 2. Clostridium spp. 分離症例数 (1982.7〜2006.3)

<table>
<thead>
<tr>
<th>感染症名</th>
<th>分離率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>一次感染症</td>
<td></td>
</tr>
<tr>
<td>肝・胆道感染</td>
<td>9/333 (2.7%)</td>
</tr>
<tr>
<td>腹膜炎</td>
<td>3/4720 (4.7%)</td>
</tr>
<tr>
<td>その他</td>
<td>3/491 (0.6%)</td>
</tr>
<tr>
<td>小計</td>
<td>46/1544 (3.0%)</td>
</tr>
<tr>
<td>術後感染症</td>
<td></td>
</tr>
<tr>
<td>肝・胆道感染</td>
<td>2/121 (1.7%)</td>
</tr>
<tr>
<td>腹膜炎</td>
<td>7/420 (1.7%)</td>
</tr>
<tr>
<td>創感染</td>
<td>7/1263 (0.6%)</td>
</tr>
<tr>
<td>その他</td>
<td>3/296 (1.0%)</td>
</tr>
<tr>
<td>小計</td>
<td>19/2100 (0.9%)</td>
</tr>
<tr>
<td>合計</td>
<td>65/3644 (1.8%)</td>
</tr>
</tbody>
</table>

Fig. 1. 手術からみた Clostridium spp. 分離状況 (1982.7〜2006.3)
Fig. 2. *Clostridium* spp. と同時に分離された菌種数 (1982.7-2006.3)

65例

4菌種 3例 (4.6%) 単独 6例 (9.2%)

3菌種 16例 (24.6%)

1菌種 16例 (24.6%)

Fig. 3. *Clostridium* spp. と混合で分離された細菌 (1982.7-2006.3)

127株

- 好気性GPR(3.1%)
- 好気性GPO(4.7%)
- その他の好気性GNR(10.2%)
- *Bacteroides* spp.(15.7%)
- その他の Enterococcus spp.(9.4%)
- その他 好気性GPO(3.1%)
- 好気性GPO(3.1%)
- Peptostreptococcus spp. (7.9%)
- *Pseudomonas* spp.(1.6%)
- *Klebsiella* spp.(7.9%)
- *E.coli*(19.7%)
最も多く、次いでEscherichia coliの19.7％、その他
の好気性グラム陰性菌、Enterococcus spp. などで
あった(Fig. 3)。

2. 薬剤感受性

薬剤感受性を測定したClostridium spp.（43株）の
内訳をTable 3に示した。これらは1989年4月から
2006年3月の16年間に分離されたものであり、薬
剤感受性はC. perfringens（19株）とその他の
Clostridium spp.（24株）とに分けたと示した。

C. perfringens の19株（但し、Tazobactam/
Piperacillin (TAZ/PIP) とCiprofloxacin (CPFX) では
5株、Erythromycin (EM) では6株、Teicoplanin
(TEIC) では13株、Piperacillin (PIP) では16株）の
薬剤感受性をMIC₉₀でみると、TAZ/PIP、
Meropenem (MEPM), Cefmenoxime (CMX), Ampi-
cillin (ABPC) が≦0.063 μg/mL と最も小さく、次い
dでCefozopran (CZOP), TEIC, Cefazolin (CEZ),
Flomoxef (FMOX), Cefpirome (CPR) およびPIPの
0.125 μg/mL, Imipenem (IPM) およびCeftazidime
(CAZ) の0.25 μg/mL と続いていた。MIC₉₀でみる
と、TAZ/PIPが≦0.063 μg/mL と最も小さく、次い
dでMEPM の0.125 μg/mL, ABPC の0.5 μg/mL, CPFX とIPMの1 μg/mLであった。EM, Fosfomycin
(FOM), Minocycline (MINO) およびClindamycin
(CLDM) は高いMIC₉₀を示した(Table 4)。

C. perfringens を除くその他のClostridium spp. の
24株（但し、TAZ/PIPとCPFXでは6株、EMで
は11株、TEICでは13株、PIPでは18株、ABPC, CEZ, Cefotiam (CTM), CAZ, Vancomycin (VCM),
FOM では21株）の薬剤感受性をMIC₉₀でみると、
ABPC, PIP, TEIC, MEPM, IPM が0.125 μg/mL と
最も小さく、次いでCMX, FMOX, MINOの0.25 μg/ mL, EM, CPR, CLDM の0.5 μg/mL と続いていた。
MIC₉₀でみると、TEIC とABPCが1 μg/mL と最も
小さく、次いでMEPM の2 μg/mL, PIP, IPM, FMOX, MINO, VCM の4 μg/mLであった。

EM, CLDM では高度耐性株が認められた(Table 5)。

薬剤感受性を測定したC. perfringens（19株）と
その他のClostridium spp.（24株）について、一
次感染部位と術後感染部位とに分け両薬剤別に
薬剤感受性をみたが、いずれの薬剤についても大き
な差は認められなかった。

III. 考察

本論文は1982年7月から開始した多施設共同研
究（外科感染症分離菌感受性調査研究会）の成績
の一部を編めたものである。研究会においては、実
際の外科感染症からの検体を収集しており、しか
もそのほとんどは消化器外科領域感染症のもので
ある。すなわちここでの成績は、消化器外科領域の
感染症におけるClostridium spp. とその薬剤感受性
を的確に示しており、実際の臨床面で参考となる
資料であると考える。

外科臨床ではClostridium tetaniによる破傷風や
C. perfringens などによるガス壊疽などが重要な疾
Table 4. 各種抗菌薬の *C. perfringens* に対する抗菌力 (1989.4~2006.3)

<table>
<thead>
<tr>
<th>Drug</th>
<th>MIC (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 0.063</td>
</tr>
<tr>
<td>ABPC</td>
<td>19</td>
</tr>
<tr>
<td>PIPC</td>
<td>16</td>
</tr>
<tr>
<td>TAZ/PIPC</td>
<td>50</td>
</tr>
<tr>
<td>CEZ</td>
<td>19</td>
</tr>
<tr>
<td>CTM</td>
<td>19</td>
</tr>
<tr>
<td>CMX</td>
<td>19</td>
</tr>
<tr>
<td>CAZ</td>
<td>19</td>
</tr>
<tr>
<td>FMOX</td>
<td>19</td>
</tr>
<tr>
<td>CPR</td>
<td>19</td>
</tr>
<tr>
<td>CPPM</td>
<td>19</td>
</tr>
<tr>
<td>CZOP</td>
<td>19</td>
</tr>
<tr>
<td>IPM</td>
<td>19</td>
</tr>
<tr>
<td>MEFPM</td>
<td>19</td>
</tr>
<tr>
<td>VCM</td>
<td>19</td>
</tr>
<tr>
<td>TEIC</td>
<td>13</td>
</tr>
<tr>
<td>EM</td>
<td>6</td>
</tr>
<tr>
<td>CLDM</td>
<td>19</td>
</tr>
<tr>
<td>MINO</td>
<td>19</td>
</tr>
<tr>
<td>CPFX</td>
<td>5</td>
</tr>
<tr>
<td>LVFX</td>
<td>19</td>
</tr>
<tr>
<td>POM</td>
<td>19</td>
</tr>
</tbody>
</table>

上段：構成比，中段：累積構成比，下段：菌株数
<table>
<thead>
<tr>
<th>MIC (μg/mL)</th>
<th>M/C</th>
<th>O.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug</td>
<td></td>
<td>5.00</td>
<td>0.125</td>
<td>0.0625</td>
<td>0.0156</td>
<td>0.0031</td>
<td>0.00065</td>
<td>0.00013</td>
<td>0.000026</td>
<td>0.0000053</td>
<td>0.00000106</td>
</tr>
<tr>
<td>ABPC</td>
<td>21</td>
<td>47.6</td>
<td>14.3</td>
<td>4.3</td>
<td>9.5</td>
<td>-</td>
<td>6.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>47.6</td>
<td>61.9</td>
<td>66.7</td>
<td>76.2</td>
<td>90.5</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PIPC</td>
<td>18</td>
<td>38.9</td>
<td>22.2</td>
<td>-</td>
<td>5.6</td>
<td>5.6</td>
<td>16.7</td>
<td>5.6</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>38.9</td>
<td>61.1</td>
<td>-</td>
<td>66.7</td>
<td>72.2</td>
<td>88.9</td>
<td>94.4</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TAZ/PIPC</td>
<td>6</td>
<td>33.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33.3</td>
<td>33.3</td>
<td>66.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>33.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CEZ</td>
<td>21</td>
<td>14.3</td>
<td>14.3</td>
<td>9.5</td>
<td>9.5</td>
<td>4.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14.3</td>
<td>28.6</td>
<td>38.1</td>
<td>47.6</td>
<td>52.4</td>
<td>-</td>
<td>66.7</td>
<td>76.2</td>
<td>90.5</td>
<td>95.2</td>
</tr>
<tr>
<td>CTM</td>
<td>21</td>
<td>14.3</td>
<td>19.0</td>
<td>23.8</td>
<td>28.6</td>
<td>38.1</td>
<td>42.9</td>
<td>47.6</td>
<td>57.1</td>
<td>-</td>
<td>61.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CMX</td>
<td>24</td>
<td>37.5</td>
<td>8.3</td>
<td>5.4</td>
<td>2.2</td>
<td>-</td>
<td>8.3</td>
<td>70.8</td>
<td>-</td>
<td>79.2</td>
<td>91.7</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>37.5</td>
<td>45.8</td>
<td>54.2</td>
<td>68.7</td>
<td>70.8</td>
<td>79.2</td>
<td>91.7</td>
<td>95.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAZ</td>
<td>21</td>
<td>4.8</td>
<td>4.8</td>
<td>19.0</td>
<td>-</td>
<td>9.5</td>
<td>-</td>
<td>4.8</td>
<td>9.5</td>
<td>9.5</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.8</td>
<td>9.5</td>
<td>28.6</td>
<td>38.1</td>
<td>42.9</td>
<td>52.4</td>
<td>61.0</td>
<td>66.7</td>
<td>85.7</td>
<td>100.0</td>
</tr>
<tr>
<td>FMOX</td>
<td>24</td>
<td>20.8</td>
<td>16.7</td>
<td>16.7</td>
<td>12.5</td>
<td>-</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>20.8</td>
<td>37.5</td>
<td>54.2</td>
<td>66.7</td>
<td>72.2</td>
<td>91.7</td>
<td>95.8</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CPR</td>
<td>24</td>
<td>20.8</td>
<td>25.0</td>
<td>41.7</td>
<td>54.2</td>
<td>-</td>
<td>62.5</td>
<td>66.7</td>
<td>79.2</td>
<td>87.5</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>20.8</td>
<td>25.0</td>
<td>33.3</td>
<td>41.7</td>
<td>50.0</td>
<td>54.2</td>
<td>66.7</td>
<td>70.8</td>
<td>75.0</td>
<td>87.5</td>
</tr>
<tr>
<td>CFPMP</td>
<td>24</td>
<td>20.8</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>12.8</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>16.7</td>
<td>29.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CZOP</td>
<td>24</td>
<td>16.7</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>16.7</td>
<td>29.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IPM</td>
<td>24</td>
<td>33.3</td>
<td>16.7</td>
<td>8.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>33.3</td>
<td>50.0</td>
<td>58.3</td>
<td>70.8</td>
<td>83.3</td>
<td>95.8</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MEPM</td>
<td>24</td>
<td>45.8</td>
<td>8.3</td>
<td>12.5</td>
<td>4.2</td>
<td>12.5</td>
<td>12.5</td>
<td>4.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>45.8</td>
<td>54.2</td>
<td>66.7</td>
<td>70.8</td>
<td>83.3</td>
<td>95.8</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VCM</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>TEIC</td>
<td>13</td>
<td>30.8</td>
<td>23.1</td>
<td>15.4</td>
<td>7.7</td>
<td>15.4</td>
<td>7.7</td>
<td>4.8</td>
<td>4.8</td>
<td>9.5</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>30.8</td>
<td>53.8</td>
<td>69.2</td>
<td>76.9</td>
<td>92.3</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EM</td>
<td>24</td>
<td>27.3</td>
<td>18.2</td>
<td>-</td>
<td>9.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>27.3</td>
<td>45.5</td>
<td>-</td>
<td>54.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CLDM</td>
<td>24</td>
<td>28.2</td>
<td>8.3</td>
<td>8.3</td>
<td>4.2</td>
<td>8.3</td>
<td>4.2</td>
<td>16.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>29.2</td>
<td>37.5</td>
<td>45.8</td>
<td>50.0</td>
<td>58.3</td>
<td>62.5</td>
<td>79.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MINO</td>
<td>24</td>
<td>29.2</td>
<td>4.2</td>
<td>20.8</td>
<td>8.3</td>
<td>20.8</td>
<td>8.3</td>
<td>87.1</td>
<td>91.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>29.2</td>
<td>33.3</td>
<td>54.2</td>
<td>62.5</td>
<td>83.3</td>
<td>91.7</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CFPX</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>LVFX</td>
<td>24</td>
<td>4.2</td>
<td>4.2</td>
<td>12.5</td>
<td>12.5</td>
<td>16.7</td>
<td>16.7</td>
<td>12.5</td>
<td>8.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.2</td>
<td>8.3</td>
<td>20.8</td>
<td>33.3</td>
<td>50.0</td>
<td>66.7</td>
<td>79.2</td>
<td>87.5</td>
<td>95.2</td>
<td>-</td>
</tr>
<tr>
<td>POM</td>
<td>21</td>
<td>4.8</td>
<td>9.5</td>
<td>38.1</td>
<td>28.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.8</td>
<td>14.3</td>
<td>52.4</td>
<td>81.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
患であるが、消化器外科領域においてはC. perfringensによる気腫性胆囊炎6-8、肝ガス壊疽9、門脈ガス血症10、敗血症11,12などの創傷型感染症の報告がみられている。臨床上多くが高度の溶血を示し、稀な感染症ではあるが注意が必要である。

Clostridium spp.の分離率は、一次感染症で高く、しかも穿孔性腹膜炎を中心とする腹膜炎での分離頻度が高かった。Clostridium spp.のほとんどの菌例において、複数菌感染としてみられており、また同時に分離された細菌をみると腸内細菌叢を想定させるものである。C. perfringensは、既に患者の腸内に生息していたものと考えられる。

Clostridium spp.のうちC. perfringensの分離頻度が一番多いが、その他多くのClostridium spp.がヒト腸内には生息していると考えられる13。一方、術後感染症からも分離されているが、術後感染予防薬が使用された後であることから、その分離頻度は低くなっているものと考えられる。

破傷風の原因菌であるC. tetaniは分離されてこなかったが、ガス壊疽の重要性が原因菌であるC. perfringensやClostridium ramosumなどが分離されており、消化器外科領域の感染症治療に当たっては注意しなければならない。また偽膜性腸炎の原因菌であるClostridium difficileも腸内に生息していると言われているが、ここでは3株分離されたのみであった。腸内での菌数が少ないために検出頻度が低かったと考えられる。また侵襲性を持たずにしたことも検出器の位置と関連していると考えられた。

本研究は1982年に開始され24年に渡るものである。この間、医学は着実に進歩しており、とりわけ嫌気性菌を始めとする腸内細菌叢に関する研究の進歩発展には目を見張るものがある。続くと新たな嫌気性菌が分類承認され、さらに1990年に入れてからは分離・同定法の向上もあり、特に嫌気性菌の分離頻度が上昇してきた14。Clostridium spp.の分離頻度は全期間を通じて1.8%と低い。しかし、その分離株数を年代的にみると、研究期間の後半で増加傾向であったのは上記の理由によるものであると考えられた。

穿孔性腹膜炎の治療に使用されるセフェム系薬は、C. perfringensに対して良好な抗菌力を示すが、他のClostridium spp.に対しMICが16μg/mL以上3株が12.5〜47.6%にみられており、注意しなければならない。ペニシリン系薬やカルバペネム系薬はClostridium spp.の総てに良好な抗菌力を示しているが、C. perfringensを除くClostridium spp.に対して抗腫性菌薬として使用されるCLDMは、高度性耐性株が20%程度みられている。

海外の報告をみるとWexlerら15は、Cefoxitin（CFX）、Ceftiraxone（CTR）やカルバペネム系薬に耐性のC. perfringensを認めていないが、たかがCFXやCTRに耐性のC. ramosumを認めている。Wyboら16はClostridium spp.の9%にβ-ラクタマーゼ産生株を認めている。またRobertsら17も、薬剤耐性のC. perfringensは認めていないが、Clostridium tertiumやClostridium clostridiformeでは全株がPenicillin耐性で、CLDMやセフェム系薬にも耐性株があることを報告している。しかし、いずれの報告においてもカルバペネム系薬耐性のClostridium spp.は認められていない。

消化器外科領域感染症の治療に際しては、分離頻度は低いもののC. perfringensを除くClostridium spp.の抗菌薬感受性、特にセフェム系薬に対し耐性株が存在することを認識している必要がある。

謝辞 1982年からの絶続的な多施設共同研究（外科感染症分離菌感受性調査研究会）の資料を利用させていただきました。ご協力賜った諸先生に深謝致します。
文献

1) 由良二郎, 品川長夫, 史川 周, 他: 外科感染症分離菌及び感染症菌 (第1報)。Jpn. J. Antibiotics 39: 2557–2578, 1986

7) 佐藤美純子, 村尾佳則, 中村直也, 他: PTGBDにて症状改善後肺葉摘出術を行った気管支けがんの1例—170例の文献的考察を含めて一。外科治療 81: 641–647, 1999

9) 吉田雅博, 嶋 慎, 近辺一男, 他: Clostridium perfringensによる肝ガス増殖の1例検索。日本消化器外科学会雑誌 25: 2181–2185, 1992

10) 藤 祐一, 窪口 剛, 明石直好, 他: 腸炎性回腸炎の腸壁内Clostridium perfringens感染による門脈ガス血

11) 福原淳子, 甲田野一, 本間博子, 他: 血管内溶血を起

こし, 短期間で死亡した症例Clostridium perfringens

感染症の1例。感染症学雑誌 76: 526–565, 2002

12) 下田清彦, 小寺泰弘, 山村義孝, 他: 胃癌術後に発症

した高度な溶血を伴うClostridium perfringens敗血症の1例。日本消化器外科学会雑誌 34: 1295–1298, 2001

13) 久保 章, 川本 晃, 石黒直樹, 他: 大腸癌症例の便

中細菌群。日本消化器外科学会雑誌 16: 1795–1799, 1983

Clostridium spp. ISOLATED FROM SURGICAL SPECIMENS

NAGAO SHINAGAWA
Department of Surgery, NTT West Tokai Hospital

JIRO YURA
Digestive Disease Center, Matsunami General Hospital

HIROMITSU TAKEYAMA
Nagoya City University Graduate School of Medical Sciences,
Department of Gastroenterological Surgery

MASAAKI TANIGUCHI
Department of Surgery, Chita Kosei Hospital

In the present study, the isolation rate of Clostridium spp. from surgical specimens and its antimicrobial susceptibilities were examined. Last 24 years, Clostridium spp. was isolated from 65 (1.8%) out of 3,644 specimens from the surgical abdominal infections. Clostridium spp. was most frequently isolated from secondary peritonitis such as perforated peritonitis, followed by hepato-biliary tract infection. There were 59 cases (90.8%) of mixed infection with Clostridium spp. and other bacteria. The rate of mixed infection with Bacteroides spp. (23.6%) was highest, followed by Escherichia coli (19.7%), other aerobic Gram-negative rods and Enterococcus spp. Although Clostridium perfringens was highly sensitive to penicillins, cephems and carbapenems, a small number of Clostridium spp. other than Clostridium perfringens were resistant to cephems, erythromycin clindamycin and fosfomycin, respectively.