細胞内シグナル伝達

クラリスロマイシンによる骨髄腫細胞へのautophagy誘導

畑 裕之 中村美紀

はじめに

多発性骨髄腫（Multiple Myeloma）は抗体産生細胞をも含む多発性の腫瘍である。抗がん剤による既存の治療では効果が期待されている。その際、thalはデキサメサゾンとの併用で効果が増強されるが、さらにクラリスロマイシン（CAM）との併用で抗腫瘍効果が増強することが知られている。一方、CAMは単剤では無効であるとの報告がある。我々は、thalとCAMの併用効果を認めた症例を複数経験したことから、CAMの骨髄腫細胞への効果を検討するため、in vitroでの実験を試みた。

材料および方法

ヒト骨髄腫細胞株である、KMM-1, 12PE（川崎医科大学、大槻教授による供与）を用いた。また骨髄腫患者骨髄サンプルよりCD138磁気ビーズを用いて患者骨髄腫細胞を単離した。

ThalはCarbiochem社より購入、CAMは大正富山製薬より供与いただいた。Thal, CAMは50μg/mlで細胞株に20時間添加し、細胞形態をサイトスピノン標的のMay-Giemsa染色で観察した。細胞株においては電子顕微鏡による観察も行った。細胞株よりcell lysateを抽出し、western blotによりLC3のprocessingを検討した。患者骨髄腫細胞はCD138ビーズを絶化後、thal, CAMを10μg/mlで培養し、細胞株と同様の検討を行った。一部の実験では、telithromycin（アベンティス・ファーマより供与）を用いた。

結 果

骨髄腫細胞株KMM1にCAMを添加すると細胞質に空胞化が認められた（Fig. 1A）。これはFCSを除去した条件で増大した（Fig. 1B）。Thalは単独では肉眼的な空胞を誘導しなかった。FCS（-）の条件でCAMとthalの併用で死細胞の増加が見られた。これらの過程において、細胞核には変化は見られなかった。

空胞を定量化すると、CAMでは小空胞が増加

![Fig. 1. 骨髄腫細胞株への空胞化誘導](image)

A：FCS +, B：FCS -
CAMにより細胞質の空胞化が誘導され、FCS除去で空胞化は増大する

熊本大学医学部附属病院血液内科
Fig. 2. 骨髄腫細胞株への空胞誘導定量

![Graph showing the induction of vacuoles in bone marrow cells under different conditions.](image)

CAMにより小空胞、C+Tにより大空胞が増加する

Fig. 3. 患者骨髄腫細胞への空胞誘導

![Images showing vacuoles in control, CAM, and Thal conditions.](image)

CAM単剤でも空胞がみられるが、C+Tで空胞は増大する。

し、CAM+thalでは大空胞の増加が見られ（Fig. 2）同様の変化は、患者骨髄腫細胞でも認められた（Fig. 3）。

電子顕微鏡の観察では、CAM, thal両者併用ともに細胞質に内容物をもつ空胞の出現を認めた（Fig. 4）。電子顕微鏡像よりこの空胞はautophagyであることが疑われたため、autophagyの進行に伴い切断されるLC-3をwestern blotで検討したところ、CAM, thal単剤でLC-3の切断が軽度みられ、これは両者併用時に増強した（Fig. 5）。

AutophagyはPI3-Kinase阻害剤である3-methyladenine（3MA）で阻害されることが知られているため、3MAをCAM投与時に同時に作用させたところ、空胞化が完全に抑制された（Fig. 6）。
考察
CAMをthal、デキサメサゾンと併用する治療法はBLTD（Biaxin with low dose thalidomide and dexamethasone）療法といわれる。この治療法による大規模な試験は行われていないが、thal単用例にも有効であることが複数の施設から報告されている。しかし、この作用機序については不明な点が多い。本研究ではCAMは単独またはthalと併用で骨髄腫細胞に空胞化を誘導し、この現象は形態観察にてautophagyであることが示された。

Autophagyは、細胞が鈍銅に陥った際に、細胞質のオルガネラを消化してエネルギーを再生する現象として発見された。しかし、その後の研究により、エネルギー再生以外にも様々な役割を持つと考えられている。

今回の検討で、CAMが単剤で骨髄腫細胞にautophagyを誘導し、これはthalとの併用で増強したことから、thalも何かの機序でautophagyを誘導することが考えられる。実際、western blotでは、thalは単独で、弱いながらもLC3のprocessingを誘導した。また、CAMのみならずtelithromycinも空胞化を誘導することが観察され(data not shown) autophagy誘導能はCAMに特有ではなく、マクロライド系に共通する作用である可能性がある。
しながらこれらの知見はin vitroでのものである。CAM単独での使用では骨髄腫に効果が無いことがわかっている。CAM単独でin vitroでautophagyが誘導されることは事実であっても、in vivoで細胞死を誘導するのは不十分であると思われ、臨床的効果を得るためにはthalとの併用が重要である。では、CAMはthalと併用すると細胞死を誘導するのでもあろうか。我々のpreliminaryな検討では、autophagyが細胞死を誘導するとの証拠は得ていない。autophagic cell deathはprogrammed cell death type IIとも呼ばれ、いわゆるアポトシスがprogrammed cell death type Iと呼ばれることが区別されている。前者は細胞質の変化であり、後者は核の変化である。しかし、現時点ではautophagic cell deathという概念はまだ確立されておらず、議論が分かれているところである。さらに、CAM、thalによる抗がん作用は、細胞死ではなく、細胞周期の停止にとどまるかもしない。この点についても、今後の検討が必要である。

なぜCAMがautophagyを誘導するのかは不明である。ただ、非定型抗酸菌にCAMが有効であることを考慮すると、CAMにより誘導されたautophagic vacuoleが抗酸菌を取り込んで処理する可能性が考えられる。事実、溶連菌が同様の機能で細胞内で処理されるとの報告が最近なされた。

謝辞
電子顕微鏡像の検討については、熊本大学医学薬学研究部細胞病理学、竹田教授、長浜バイオ大学、山本教授のご協力を得た。LC3のwestern blotについては、国立遺伝学研究所、吉森教授、神本先生のご協力を得た。

文献
1) Vescio RA, S.-S. N., Manyak SJ, Yang H, Berc-