ミニシンポジウム 「ケトライド」

鼻茸線維芽細胞におけるIL-8発現およびNF-κB活性化に対するテリスロマイシンの影響

牛飼雅人 相良ゆかり 福岩達哉 西元謙吾 松根彰志 黒野祐一

はじめに

テリスロマイシンは、14員環ラクトンの8位側鎖にケトン基を持つケトライド系抗茵薬である。従来のマクロライド系抗菌薬と比較して幅広い抗菌スペクトルと強い抗菌力を持つとともに、ペニシリン耐性肺炎球菌や従来のマクロライド耐性の肺炎球菌にも交叉耐性を示さず、優れた抗菌活性を維持していることが知られている。この様に同剤の抗菌剤としての有用性はよく知られているが、従来のマクロライド系薬剤で報告されているような免疫調整作用や抗炎症作用といった抗菌作用以外の作用、いわゆる新作用を同剤が持つか否かについての報告はこれまで少ない。そこで、今回我々はヒト鼻茸由来の培養線維芽細胞におけるIL-8発現に対するテリスロマイシンの影響を検討するとともに、NF-κB活性化に対する同剤の影響を検討した。

材料と方法

(1) 培養細胞

手術時に得られた慢性副鼻腔炎患者の鼻茸組織をPBSにて洗浄後、小片に細切し、10%牛胎児血清、100mg/mlペニシリン、100mg/mlストレプトマイシンを加えたDMEMにて細代培養した。実験には第6から第8代の細胞を使い、実験の際には牛胎児血清を除いた培養液を用いた。

(2) IL-8発現におけるテリスロマイシンの影響

ヒト鼻茸由来培養線維芽細胞を10⁻⁷〜10⁻⁴Mのテリスロマイシンにて24時間前処置した後、100pg/mlのIL-1βにて刺激した。24時間後に培養上清を回収し、BioSource社のELISA kitを用いて培養上清中のIL-8濃度を測定した。また、同様の条件下においてテリスロマイシンで前処置後、IL-1βにて刺激し、1時間後にtotal RNAを抽出してRT-PCR法にてIL-8 mRNAの測定を行った。

Fig. 1. Effect of telithromycin on the expression of IL-8.

<table>
<thead>
<tr>
<th>IL-1β (100pg/ml)</th>
<th>N.S</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TEL (M)</td>
<td>-</td>
<td>-</td>
<td>10⁻⁷</td>
<td>10⁻⁴</td>
<td>10⁻⁵</td>
</tr>
</tbody>
</table>

(pgmil)

IL-8

250

500

750

1000

鹿児島大学大学院歯学総合研究科歯医歯学研究分野歯部疾患学
Fig. 2. Effect of telithromycin on the activation of NF-κB.

NF-κB

Free Probe

IL-1β (100pg/ml) - + + + + +

TBL (M) - - 10⁻⁷ 10⁻⁶ 10⁻⁵ 10⁻⁴

（3）NF-κB活性化に対するテリスロマイシンの影響

ヒト鼻茸由来培養線維芽細胞を同様の条件でテリスロマイシンにて前処置した後、100pg/mlのIL-1βにて刺激し、1時間後に核蛋白を抽出した。Electrophoretic Mobility Shift Assay（EMSA）法にてNF-κBのbinding activityを測定した。EMSAは、Promega社のGel Shift Assay Systemを用いて行い、DNAプロープは、システムに同様されているオリゴヌクレオチドを3²Pで末端標識して使用した。

結果

（1）IL-8発現におけるテリスロマイシンの影響

未刺激の鼻茸由来培養線維芽細胞では、培養上清中のIL-8濃度は検出限界以下であったが、100pg/mlのIL-1βで刺激するとIL-8濃度は著明に上昇した。このIL-1β刺激によるIL-8濃度の上昇に対し、10⁻⁷～10⁻⁴の濃度のテリスロマイシンも有意な影響を与えなかった（Fig. 1）。

また、RT-PCRによるIL-8 mRNAの検討でも同様の結果であり、IL-1β刺激によるIL-8発現亢進に対し、10⁻⁷～10⁻⁴の濃度のテリスロマイシンも有意な影響を与えないかった。

（2）NF-κB活性化に対するテリスロマイシンの影響

鼻茸由来培養線維芽細胞を100pg/mlのIL-1βで刺激すると、NF-κB活性の亢進が認められが、このNF-κB活性の亢進に対し10⁻⁷～10⁻⁴のいずれの濃度のテリスロマイシンも影響を与えなかった（Fig. 2）。

考察

慢性副鼻腔炎に対する強力な治療法として耳鼻咽喉科領域の日常診療において確立されたものとなっているが、その効果は、マクロライドが本来持つ抗菌剤としての効果よりもむしろ、抗炎症作用や免疫調節作用、気道粘膜の水・分泌調整作用といったいわゆる新作用によるものが大きいと考えられている）。ケトライド系抗菌薬であるテリスロマイシンに従来のマクロライド薬に見られるような抗炎症作用以外の作用があるか否かに関しての報告は少ないが、白血球に対する作用については幾つか報告されている。例えば、Vazifehらは、PMA刺激によるヒト末梢血好中球からのsuperoxide産生をテリスロマイシンが抑制すると報告している。また、AraujoらはLPS刺激によるヒト末梢血リンパ球からのIL-1α、TNF-α産生がテリスロマイシンによって抑制されたと報告し、その一方でNakagawaらはShiga toxin刺激によるヒト末梢血リンパ球からのIL-6、IL-8産生をテリスロマイシンが抑制したと報告している。この様に白血球においては、テリスロマイシンがsuperoxide産生やサイトカイン産生を抑制する可能性があると思われる。
が、上皮や線維芽細胞における作用については報
告は我々が気渋し得た範囲ではない。今回の検討
では、ヒト鼻茸由来線維芽細胞においては、IL-8
発現に対してテリスロマイシンの抑制効果は認め
られず、またNF-κB活性化に対応影響も認めら
れてなかった。テリスロマイシンやクラリスロマイ
シンなど従来の14員環マクロライドは、上皮細胞
や線維芽細胞においてIL-8などの炎症性サイトカ
イン発現を抑制することが知られており、同剤の
NF-κBの抑制はその機序のひとつとしてされている。
この炎症性サイトカイン抑制による抗炎症作用
は、慢性副鼻腔炎やびまん性汎細気管支炎における
マクロライド療法の有効性を説明する重要な機
序と思われる。したがって、今回テリスロマイシ
ンがIL-8発現やNF-κB活性化に対抗抑制効果を
示さなかったことは、同剤が現行の少量長期マク
クロライド療法には達さない可能性を示唆するもの
と思われる。マクロライド療法が慢性副鼻腔炎や
びまん性汎細気管支炎の治療に大きく貢献した反
面、同療法がマクロライド耐性菌の増加の要因と
なっていることは否めない。テリスロマイシンは、
ペニシリン耐性肺炎球菌や従来のマクロライドに
耐性の肺炎球菌に交差耐性を示さず、優れた抗菌
活性を維持していることが知られている。この優
れた抗菌活性を維持するためにもテリスロマイシ
ンは急性感染症に対してのみ使用し、慢性上気道
感染症に対する少量長期マクロライド療法に用い
ることは避けるべきであろう。

参考文献
1）大山 勝, 上野寛義, 松尾彰志, 他：副鼻腔炎に対
するマクロライド療法の現状。耳鼻臨床 92:571～
582, 1999
2）Vazifeh D., Bryskier A. & Labro M. T. : Effect of
proinflammatory cytokines on the interplay be-
tween roxithromycin, HMR 3647, or HMR 3004
and human polymorphonuclear neutrophils. Anti-
3) Araujo F. G., Sliper T. L. & Remington J. S. : In-
hibition of secretion of interleukin-1alpha and tu-
mor necrosis factor alpha by the ketolide antibiotic
telithromycin. Antimicrob. Agents Chemother. 46 : 
3327～3330, 2002
4) Nakagawa S., Kono S., Sakane I., Iwakura N.,
Tamura Y., Kushiya K., Konda F. & Yamamoto
T. : Inhibitory action of telithromycin against Shiga
Commun. 310 : 1194～1199, 2003