シンポジウム１ 「新規マクロライド誘導体EM703の生物評価」

EM703の気道上皮Clイオン輸送に対する影響

近藤光子 平良真奈子 玉置 淳 多賀谷悦子
中田潤子 河谷清実 磯野一雄 永井厚志

はじめに

びまん性肺細気管支炎をはじめとする慢性気道感染症の過分泌に対して、14員環マクロライドは、感度を著明に減少させることが明らかにされてきた。そのメカニズムの一つに気道上皮細胞に対する直接作用として、Clイオントランスポートの抑制が推測されている。我々はこれまで、Ussing chamber法を用いて、14員環マクロライドのエリスロマイシン（EM）1）や15員環のアジスロマイシン（AZM）2）がClイオントランスポートを抑制することを報告してきた。今回、抗菌作用をもたない、新規合成12員環マクロライド3）であるEM703のClイオントランスポートに与える影響について検討したので報告する。

方 法

牛気管から気道上皮細胞をプロテアーゼ処理にて単離し、Transwell上に細胞を、コンフルエンスの後、air-liquid interface法で培養した。その後、気道上皮細胞をUssing chamberにマウントし、voltage clampを用いて、能動イオン輸送の指標である短絡電流（Isc）を測定した。EM703を基底側に添加し、20分後にisoproterenol（Iso, 10⁻⁵M）やUTP（10⁻⁴M）で刺激し、短絡電流を測定した。その際、Na channel blockerであるamilorideを前処理し、Naイオントランスポートを消去し、Clイオントランスポートのみを評価した。さらに、UTP刺激による細胞内Ca²⁺上昇に対するEM703の効果についてもfura-2法を用いて検討した。

結 果

1）Clイオントランスポートに対するEM703の影響

EM703を前処理後、Isoで刺激した短絡電流の変化のトレースをFig. 1に示した。EM703単独ではベースラインの短絡電流に対しては影響を与えなかったが、Iso刺激による短絡電流の上昇を著明に抑制した。すなわちIso添加により2相性の短絡電流の増加が認められたが、EM703（10⁻⁶M）で、Isoのピークの反応は約1/4程度に低下し、EM703（10⁻⁴M）でその反応はほぼ完全に抑制された（Fig. 1）。以上より、cAMP依存性のClイオントランスポートはEM703により、強く抑制されることが明らかになった。次にCa依存性のClイオントランスポートに対する影響を、UTPを用いて検討した。Fig. 2左に示すようにコントロールに比較して、EM703では10⁻⁵M、10⁻⁴MのいずれもUTP刺激後の短絡電流の上昇を強く抑制した。EMとの比較では10⁻⁴Mの高濃度ではその抑制効果には有意差は認めなかったが、ややEM703が強い傾向にあった（Fig. 2右）。

2）細胞内Ca²⁺動態に対するEM703の影響

Ca依存性のイオントランスポートは細胞内Ca²⁺動態にも影響される可能性がある。これまで、我々はEMが細胞外Ca²⁺の流入を抑えることを確認しており4），今回はEM703についても同様の検討を行った。EM703前処置後のUTP刺激後の細胞内Ca²⁺上昇のトレースをFig. 3に示す。UTP（10⁻⁴M）刺激により細胞内Ca²⁺はtransientとsustainedの2相性の反応を示した。低濃度のEM703（10⁻⁸M）を前処置した後、UTPのsustained responseのみが著明に抑制された。しかし、高濃度のEM703（10⁻⁶～10⁻⁵M）を前処置すると、UTPのtransient response
Fig. 1 イソプロテレノール刺激後の短絡電流上昇に対するEM703の影響
左）短絡電流のトレーサー、右）コントロール群とEM703（10^{-6} M）との比較。

Fig. 2 UTP刺激後の短絡電流上昇に対するEM703の影響
左）短絡電流のトレーサー、右）コントロール群とEM（10^{-6} M）、EM703（10^{-4} M）、との比較。
Fig. 3 UTP刺激後の細胞内Ca²⁺上昇に対するEM703の影響
F340/F380の変化のトレースを示す。

UTP
Control

UTP
10⁻⁸M

UTP
10⁻⁶M

UTP
10⁻⁴M

EM703
1 min

も抑制された。

考 察
今回の検討から、EM703はIsoおよびUTP刺激後のCIイオントランスポートを強く抑制し、UTP刺激後の細胞内Ca²⁺上昇も抑制することが明らかになった。Isoは細胞内cAMP濃度の上昇を介して、またUTPは細胞内Ca²⁺の上昇を介してCIイオントランスポートを亢進させることが知られていた。また気道上皮細胞のCIチャネルにはCFTR、ORCC、Ca-activated CIチャネル、volume sensitive CIチャネルが存在するが、14員環マクロライドはORCCやCa-activated CIチャネルを抑制することがバッチクランプ法により報告されてきた8,9). しかし、CIイオントランスポートの有意な抑制のための濃度は、Ussing chamber法、バッチクランプ法を問わず、EMで10⁻⁸M以上の高濃度を必要とした報告が多い。今回検討したEM706が10⁻⁶Mでも著明な低下を引き起こしたことは、EM703がEMに比較してより強力なCIイオントランスポート抑制作用があることを示唆する。またUTP刺激後の細胞内Ca²⁺上昇に対してもEM703が10⁻⁶Mの低濃度で細胞外からの流入を抑制することが示された。これは、従来、我々が検討したEMのATP/UTPの細胞内Ca²⁺流入抑制を示すための濃度10⁻⁵Mよりはるかに低濃度であり、このことからもEM703のEMに対するpotencyの優位性が推測された。

Ussing chamber法では気道上皮障害が生ずるとtight junctionの破壊が起こり、細胞間透過性が亢進するためコンダクタンスの増加が生ずる。しかし、今回の検討ではEM703、10⁻⁴Mの濃度においてもコンダクタンスの増加は認められず、短時間の検討では細胞障害は起こってないと推測された。以上の結果から、CIイオントランスポートに対するマクロライドの作用は抗菌作用とは独立したものをあることが示され、またAZMで証明されたのと同様に、14員環マクロライドがCIイオントランスポートの抑制に必須ではなくないことが示された。今後はEM703のCIイオントランスポートの抑制について詳細な用量-反応関係を明らかにし、またよ
り長時間の実験を通してEM703の細胞毒性の有無を検討していく必要がある。

文 献